
Chapter 17

Orbits

Dynamics of many-body systems.

Many mathematical models involve the dynamics of objects under the influ-
ence of both their mutual interaction and the surrounding environment. The objects
might be planets, molecules, vehicles, or people. The ultimate goal of this chapter is
to investigate the n-body problem in celestial mechanics, which models the dynamics
of a system of planets, such as our solar system. But first, we look at two simpler
models and programs, a bouncing ball and Brownian motion.

The exm program bouncer is a model of a bouncing ball. The ball is tossed
into the air and reacts to the pull of the earth’s gravitation force. There is a
corresponding pull of the ball on the earth, but the earth is so massive that we can
neglect its motion.

Mathematically, we let v(t) and z(t) denote the velocity and the height of the
ball. Both are functions of time. High school physics provides formulas for v(t) and
z(t), but we choose not to use them because we are anticipating more complicated
problems where such formulas are not available. Instead, we take small steps of size
δ in time, computing the velocity and height at each step. After the initial toss,
gravity causes the velocity to decrease at a constant rate, g. So each step updates
v(t) with

v(t+ δ) = v(t)− δ g

The velocity is the rate of change of the height. So each step updates z(t) with

z(t+ δ) = z(t) + δ v(t)

Here is the core of bouncer.m.

Copyright c⃝ 2011 Cleve Moler
MatlabR⃝ is a registered trademark of MathWorks, Inc.TM

October 4, 2011

221

222 Chapter 17. Orbits

[z0,h] = initialize_bouncer;

g = 9.8;

c = 0.75;

delta = 0.005;

v0 = 21;

while v0 >= 1

v = v0;

z = z0;

while all(z >= 0)

set(h,’zdata’,z)

drawnow

v = v - delta*g;

z = z + delta*v;

end

v0 = c*v0;

end

finalize_bouncer

The first statement

[z0,h] = initialize_bouncer;

generates the plot of a sphere shown in figure 17.1 and returns z0, the z-coordinates
of the sphere, and h, the Handle Graphics “handle” for the plot. One of the exer-
cises has you investigate the details of initialize_bouncer. The figure shows the
situation at both the start and the end of the simulation. The ball is at rest and so
the picture is pretty boring. To see what happens during the simulation, you have
to actually run bouncer.

The next four statements in bouncer.m are

g = 9.8;

c = 0.75;

delta = 0.005;

v0 = 21;

These statements set the values of the acceleration of gravity g, an elasticity coef-
ficient c, the small time step delta, and the initial velocity for the ball, v0.

All the computation in bouncer is done within a doubly nested while loop.
The outer loop involves the initial velocity v0.

while v0 >= 1

...

v0 = c*v0;

end

To achieve the bouncing affect, the initial velocity is repeatedly multiplied by c =
0.75 until it is less than 1. Each bounce starts with a velocity equal to 3/4 of the
previous one.

Within the outer loop, the statements

223

Figure 17.1. Initial, and final, position of a bouncing ball. To see what
happens in between, run bouncer.

v = v0;

z = z0;

initialize the velocity v to v0 and the height z to z0. Then the inner loop

while all(z >= 0)

set(h,’zdata’,z)

drawnow

v = v - delta*g;

z = z + delta*v;

end

proceeds until the height goes negative. The plot is repeatedly updated to reflect
the current height. At each step, the velocity v is decreased by a constant amount,
delta*g, thereby affecting the gravitational deceleration. This velocity is then used
to compute the change in the height z. As long as v is positive, the z increases with
each step. When v reaches zero, the ball has reached its maximum height. Then v

becomes negative and z decreases until the ball returns to height zero, terminating
the inner loop.

After both loops are complete, the statement

finalize_bouncer

activates a pushbutton that offers you the possibility of repeating the simulation.
Brownian motion is not as obvious as gravity in our daily lives, but we do

encounter it frequently. Albert Einstein’s first important scientific paper was about
Brownian motion. Think of particples of dust suspended in the air and illuminated

224 Chapter 17. Orbits

by a beam of sunlight. Or, diffusion of odors throughout a room. Or, a beach ball
being tossed around a stadium by the spectators.

In Brownian motion an object – a dust particle, a molecule, or a ball – reacts
to surrounding random forces. Our simulation of these forces uses the built-in
MATLAB function randn to generate normally distributed random numbers. Each
time the statement

randn

is executed a new, unpredictable, value is produced. The statement

randn(m,n)

produces an m-by-n array of random values. Each time the statement

hist(randn(100000,1),60)

is executed a histogram plot like the one in figure 17.2 is produced. Try executing
this statement several times. You will see that different histograms are produced
each time, but they all have the same shape. You might recognize the “bell-shaped
curve” that is known more formally as the Gaussian or normal distribution. The
histogram shows that positive and negative random numbers are equally likely and
that small values are more likely than large ones. This distribution is the mathe-
matical heart of Brownian motion.

−5 0 5
0

1000

2000

3000

4000

5000

6000

7000

Figure 17.2. Histogram of the normal random number generator.

A simple example of Brownian motion known as a random walk is shown in
figure 17.3. This is produced by the following code fragment.

m = 100;

x = cumsum(randn(m,1));

y = cumsum(randn(m,1));

225

plot(x,y,’.-’)

s = 2*sqrt(m);

axis([-s s -s s]);

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

Figure 17.3. A simple example of Brownian motion.

The key statement is

x = cumsum(randn(m,1));

This statement generates the x-coordinates of the walk by forming the successive
cumulative partial sums of the elements of the vector r = randn(m,1).

x1 = r1

x2 = r1 + r2

x3 = r1 + r2 + r3

...

A similar statement generates the y-coordinates. Cut and paste the code fragment
into the Matlab command window. Execute it several times. Try different values
of m. You will see different random walks going off in different random directions.
Over many executions, the values of x and y are just as likely to be positive as
negative. We want to compute an axis scale factor s so that most, but not all, of
the walks stay within the plot boundaries. It turns out that as m, the length of the
walk, increases, the proper scale factor increases like

√
m.

A fancier Brownian motion program, involving simultaneous random walks of
many particles in three dimensions, is available in brownian3.m. A snapshot of the
evolving motion is shown in figure 17.4. Here is the core of brownian3.m.

226 Chapter 17. Orbits

−5
0

5
10

−5

0

5

10

−5

0

5

10

Figure 17.4. A snapshot of the output from brownian3, showing simulta-
neous random walks of many particules in three dimensions.

n = 50; % Default number of particles

P = zeros(n,3);

H = initialize_graphics(P);

while ~get(H.stop,’value’)

% Obtain step size from slider.

delta = get(H.speed,’value’);

% Normally distributed random velocities.

V = randn(n,3);

% Update positions.

P = P + delta*V;

update_plot(P,H);

end

The variable n is the number of particles. It is usually equal to 50, but some other
number is possible with brownian3(n). The array P contains the positions of n
particles in three dimensions. Initially, all the particles are located at the origin,
(0, 0, 0). The variable H is a Matlab structure containing handles for all the user

227

interface controls. In particular, H.stop refers to a toggle that terminates the while
loop and H.speed refers to a slider that controls the speed through the value of the
time step delta. The array V is an n-by-3 array of normally distributed random
numbers that serve as the particle velocities in the random walks. Most of the
complexity of brownian3 is contained in the subfunction initialize_graphics.
In addition to the speed slider and the stop button, the GUI has pushbuttons or
toggles to turn on a trace, zoom in and out, and change the view point.

We are now ready to tackle the n-body problem in celestial mechanics. This is
a model of a system of planets and their interaction described by Newton’s laws of
motion and gravitational attraction. Over five hundred years ago, Johannes Kepler
realized that if there are only two planets in the model, the orbits are ellipses with a
common focus at the center of mass of the system. This provides a fair description
of the moon’s orbit around the earth, or of the earth’s orbit around the sun. But if
you are planning a trip to the moon or a mission to Mars, you need more accuracy.
You have to realize that the sun affects the moon’s orbit around the earth and that
Jupiter affects the orbits of both the earth and Mars. Furthermore, if you wish to
model more than two planets, an analytic solution to the equations of motion is not
possible. It is necessary to compute numerical approximations.

Our notation uses vectors and arrays. Let n be the number of bodies and,
for i = 1, . . . , n, let pi be the vector denoting the position of the i-th body. For
two-dimensional motion the i-th position vector has components (xi, yi). For three-
dimensional motion its components are (xi, yi, zi). The small system shown in
figure 17.5 illustrates this notation. There are three bodies moving in two dimen-
sions. The coordinate system and units are chosen so that initially the first body,
which is gold if you have color, is at the origin,

p1 = (0, 0)

The second body, which is blue, is one unit away from the first body in the x
direction, so

p2 = (1, 0)

The third body, which is red, is one unit away from the first body in the y direction,
so

p3 = (0, 1)

We wish to model how the position vectors pi vary with time, t. The velocity
of a body is the rate of change of its position and the acceleration is the rate of
change of its velocity. We use one and two dots over pi to denote the velocity and
acceleration vectors, ṗi and p̈i. If you are familiar with calculus, you realize that
the dot means differentiation with respect to t. For our three body example, the
first body is initially heading away from the other two bodies, so its velocity vector
has two negative components,

ṗ1 = (−0.12,−0.36)

The initial velocity of the second body is all in the y direction,

ṗ2 = (0, 0.72)

228 Chapter 17. Orbits

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

p
1

p
2

p
3

Figure 17.5. Initial positions and velocities of a small system with three
bodies in two-dimensional space.

and the initial velocity of the third body is sending it towards the second body,

ṗ3 = (0.36,−0.36)

Newton’s law of motion, the famous F = ma, says that the mass of a body
times its acceleration is proportional to the sum of the forces acting on it. Newton’s
law of gravitational says that the force between any two bodies is proportional to
the product of their masses and inversely proportional to the square of the distance
between them. So, the equations of motion are

mip̈i = γ
∑
j ̸=i

mimj
pj − pi

||pj − pi||3
, i = 1, . . . , n

Here γ is the gravitational constant, mi is the mass of the i-th body, pj − pi is the
vector from body i to body j and ||pj − pi|| is the length or norm of that vector,
which is the distance between the two bodies. The denominator of the fraction
involves the cube of the distance because the numerator contains the distance itself
and so the resulting quotient involves the inverse of the square of the distance.

Figure 17.6 shows our three body example again. The length of the vector
r23 = p3−p2 is the distance between p2 and p3. The gravitation forces between the
bodies located at p2 and p3 are directed along r23 and −r23.

To summarize, the position of the i-th body is denoted by the vector pi. The
instantaneous change in position of this body is given by its velocity vector, denoted
by ṗi. The instantaneous change in the velocity is given by its acceleration vector,
denoted by p̈i. The acceleration is determined from the position and masses of all
the bodies by Newton’s laws of motion and gravitation.

The following notation simplifies the discussion of numerical methods. Stack
the position vectors on top of each other to produce an n-by-d array where n is the

229

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

p
1

p
2

p
3

r
23

Figure 17.6. The double arrow depicts the vectors r23 = p3−p2 and −r32.
The length of this arrow is the distance between p2 and p3.

number of bodies and d = 2 or 3 is the number of spatial dimensions..

P =

p1
p2
...
pn

Let V denote a similar array of velocity vectors.

V =

ṗ1
ṗ2
...
ṗn

And, let G(P) denote the array of gravitation forces.

G(P) =

g1
g2
...
gn

where

gi = γ
∑
j ̸=i

mj
pj − pi

||pj − pi||3

With this notation, the equations of motion can be written

Ṗ = V

V̇ = G(P)

230 Chapter 17. Orbits

For our three body example, the initial values of P and V are

P =

 0 0
1 0
0 1

and

V =

 −0.12 −0.36
0 0.72

0.36 −0.36

The masses in our three body example are

m1 = 1/2, m2 = 1/3, m3 = 1/6

From these quantities, we can compute the initial value of the gravitation forces,
G(P).

We will illustrate our numerical methods by trying to generate a circle. The
differential equations are

ẋ = y

ẏ = −x

With initial conditions x(0) = 0, y(0) = 1, the exact solution is

x(t) = sin t, y(t) = cos t

The orbit is a perfect circle with a period equal to 2π.
The most elementary numerical method, which we will not actually use, is

known as the forward or explicit Euler method. The method uses a fixed time step
δ and simultaneously advances both the positions and velocities from time tk to
time tk+1 = tk + δ.

Pk+1 = Pk + δ Vk

Vk+1 = Vk + δ G(Pk)

The forward Euler’s method applied to the circle generator problem becomes

xk+1 = xk + δ yk

yk+1 = yk − δ xk

The result for δ = 2π/30 is shown in the first plot in figure 17.7. Instead of a circle
we get a growing spiral. The method is unstable and consequently unsatisfactory,
particularly for long time periods. Smaller time steps merely delay the inevitable.
We would see more complicated, but similar, behavior with the n-body equations.

Another elementary numerical method is known as the backward or implicit
Euler method. In general, it involves somehow solving a nonlinear system at each
step.

Pk+1 − δ Vk+1 = Pk

Vk+1 − δ G(Pk+1) = Vk

231

−1 0 1

−1

0

1

−1 0 1

−1

0

1

−1 0 1

−1

0

1

Figure 17.7. Three versions of Euler’s method for generating a circle.
The first plot shows that the forward method is unstable. The second plot shows that
the backward method has excessive damping. The third plot shows that symplectic
method, which is a compromise between the first two methods, produces a nearly
perfect circle.

For our simple circle example the implicit system is linear, so xk+1 and yk+1 are
easily computed by solving the 2-by-2 system

xk+1 − δ yk+1 = xk

yk+1 + δ xk+1 = yk

The result is shown in the second plot in figure 17.7. Instead of a circle we get a
decaying spiral. The method is stable, but there is too much damping. Again, we
would see similar behavior with the n-body equations.

The method that we actually use is a compromise between the explicit and
implicit Euler methods. It is the most elementary instance of what are known as
symplectic methods. The method involves two half-steps. In the first half-step, the
positions at time tk are used in the gravitation equations to update of the velocities.

Vk+1 = Vk + δ G(Pk)

Then, in the second half-step, these “new” velocities are used to update the posi-
tions.

Pk+1 = Pk + δ Vk+1

The novel feature of this symplectic method is the subscript k + 1 instead of k on
the V term in the second half-step.

For the circle generator, the symplectic method is

xk+1 = xk + δ yk

yk+1 = yk − δ xk+1

The result is the third plot in figure 17.7. If you look carefully, you can see that the
orbit in not quite a circle. It’s actually a nearly circular ellipse. And the final value
does not quite return to the initial value, so the period is not exactly 2π . But the
important fact is that the orbit is neither a growing nor a decaying spiral.

232 Chapter 17. Orbits

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

p
1

p
2

p
3

Figure 17.8. The first few steps of our example system.

There are more complicated symplectic algorithms that are much more accu-
rate per step than this symplectic Euler. But the symplectic Euler is satisfactory
for generating well behaved graphical displays. Most well-known numerical meth-
ods, including Runge-Kutta methods and traditional multistep methods, do not
have this symplectic stability property and, as a result, are not as satisfactory for
computing orbits over long time spans.

Figure 17.8 shows the first few steps for our example system. As we noted
earlier, the initial position and velocity are

P =

0 0

1.0000 0

0 1.0000

V =

-0.1200 -0.3600

0 0.7200

0.3600 -0.3600

After one step with δ = 0.20 we obtain the following values.

P =

-0.0107 -0.0653

0.9776 0.1464

0.0767 0.9033

V =

-0.0533 -0.3267

-0.1118 0.7318

233

0.3836 -0.4836

The three masses, 1/2, 1/3, and 1/6, are not equal, but are comparable, so all three
bodies have significant affects on each other and all three move noticeable distances.
We see that the initial velocity of the first body causes it to move away from the
other two. In one step, its position changes from (0, 0) to small negative values,
(−0.0107,−0.0653) The second body is initially at position (1, 0) with velocity (0, 1)
in the positive y direction. In one step, its position changes to (0.9776, 0.1464). The
x-coordinate has changed relatively little, while the y-coordinate has changed by
roughly 0.72 δ. The third body moves in the direction indicated by the velocity
vector in figure 17.5.

After a second step we have the following values. As expected, all the trends
noted in the first step continue.

P =

-0.0079 -0.1209

0.9325 0.2917

0.1589 0.7793

V =

0.0136 -0.2779

-0.2259 0.7268

0.4109 -0.6198

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 17.9. The initial trajectories of our example system.

Figure 17.9 shows an initial section of the trajectories. You should run our
Experiments program orbits(3) to see the three bodies in motion. The small
body and the large body orbit in a clockwise direction around each other while the
medium-size body orbits in a counter-clockwise direction around the other two.

234 Chapter 17. Orbits

−20

0

20

−20
−10

0
10

20

−5

0

5

Figure 17.10. The solar system, with the initial positions of all the planets
and the orbits of the outer planets, Jupiter, Saturn, Uranus, and Neptune.

Our Experiments program orbits models nine bodies in the solar system,
namely the sun and eight planets. Figures 17.10 and 17.11 show snapshots of the
output from orbits with two different zoom factors that are necessary to span the
scale of the system. The orbits for all the planets are in the proper proportion.
But, obviously, the symbols for the sun and the planets do not have the same scale.
Web sources for information about the solar system are provided by the University
Corporation for Atmospheric Research, the Jet Propulsion Laboratory, and the US
National Air and Space Museum,

http://www.windows.ucar.edu

http://www.jpl.nasa.gov/solar_system

http://airandspace.si.edu:80/etp/ss/index.htm

235

−1

0

1

−1
−0.5

0
0.5

1

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Figure 17.11. Zooming in by a factor of 16 reveals the orbits of the inner
planets, Mercury, Venus, Earth and Mars.

Recap
%% Orbits Chapter Recap

% This is an executable program that illustrates the statements

% introduced in the Orbits Chapter of "Experiments in MATLAB".

% You can access it with

%

% orbits_recap

% edit orbits_recap

% publish orbits_recap

%

% Related EXM programs

%

% bouncer

% orbits

236 Chapter 17. Orbits

%% Core of bouncer, simple gravity. no gravity

% Initialize

z0 = eps;

g = 9.8;

c = 0.75;

delta = 0.005;

v0 = 21;

y = [];

% Bounce

while v0 >= 1

v = v0;

z = z0;

while z >= 0

v = v - delta*g;

z = z + delta*v;

y = [y z];

end

v0 = c*v0;

end

% Simplified graphics

close all

figure

plot(y)

%% Normal random number generator.

figure

hist(randn(100000,1),60)

%% Snapshot of two dimensional Brownian motion.

figure

m = 100;

x = cumsum(randn(m,1));

y = cumsum(randn(m,1));

plot(x,y,’.-’)

s = 2*sqrt(m);

axis([-s s -s s]);

237

%% Snapshot of three dimensional Brownian motion, brownian3

n = 50;

delta = 0.125;

P = zeros(n,3);

for t = 0:10000

% Normally distributed random velocities.

V = randn(n,3);

% Update positions.

P = P + delta*V;

end

figure

plot3(P(:,1),P(:,2),P(:,3),’.’)

box on

%% Orbits, the n-body problem.

%{

% ORBITS n-body gravitational attraction for n = 2, 3 or 9.

% ORBITS(2), two bodies, classical elliptic orbits.

% ORBITS(3), three bodies, artificial planar orbits.

% ORBITS(9), nine bodies, the solar system with one sun and 8 planets.

%

% ORBITS(n,false) turns off the uicontrols and generates a static plot.

% ORBITS with no arguments is the same as ORBITS(9,true).

% n = number of bodies.

% P = n-by-3 array of position coordinates.

% V = n-by-3 array of velocities

% M = n-by-1 array of masses

% H = graphics and user interface handles

if (nargin < 2)

gui = true;

end

if (nargin < 1);

n = 9;

end

[P,V,M] = initialize_orbits(n);

H = initialize_graphics(P,gui);

steps = 20; % Number of steps between plots

238 Chapter 17. Orbits

t = 0; % time

while get(H.stop,’value’) == 0

% Obtain step size from slider.

delta = get(H.speed,’value’)/(20*steps);

for k = 1:steps

% Compute current gravitational forces.

G = zeros(size(P));

for i = 1:n

for j = [1:i-1 i+1:n];

r = P(j,:) - P(i,:);

G(i,:) = G(i,:) + M(j)*r/norm(r)^3;

end

end

% Update velocities using current gravitational forces.

V = V + delta*G;

% Update positions using updated velocities.

P = P + delta*V;

end

t = t + steps*delta;

H = update_plot(P,H,t,gui);

end

finalize_graphics(H,gui)

end

%}

%% Run all three orbits, with 2, 3, and 9 bodies, and no gui.

figure

orbits(2,false)

figure

orbits(3,false)

figure

orbits(9,false)

239

Exercises

17.1 Bouncing ball.
(a) What is the maximum height of the bouncing ball?
(b) How many times does the ball bounce?
(c) What is the effect of changing each of the four bouncer values g, c, delta, and
v0.

17.2 Pluto and Ceres. Change orbits to orbits11 by adding the erstwhile planet
Pluto and the recently promoted dwarf planet Ceres. See Wikipedia:

http://en.wikipedia.org/wiki/Planet

http://en.wikipedia.org/wiki/Ceres_(dwarf_planet)

and

http://orbitsimulator.com/gravity/articles/ceres.html

17.3 Comet. Add a comet to orbits. Find initial conditions so that the comet
has a stable, but highly elliptical orbit that extends well beyond the orbits of the
planets.

17.4 Twin suns. Turn the sun in orbits into a twin star system, with two suns
orbiting each other out of the plane of the planets. What eventually happens to the
planetary orbits? For example, try

sun1.p = [1 0 0];

sun1.v = [0 0.25 0.25];

sun1.m = 0.5;

sun2.p = [-1 0 0];

sun2.v = [0 -0.25 -0.25];

sun2.m = 0.5;

Try other values as well.

